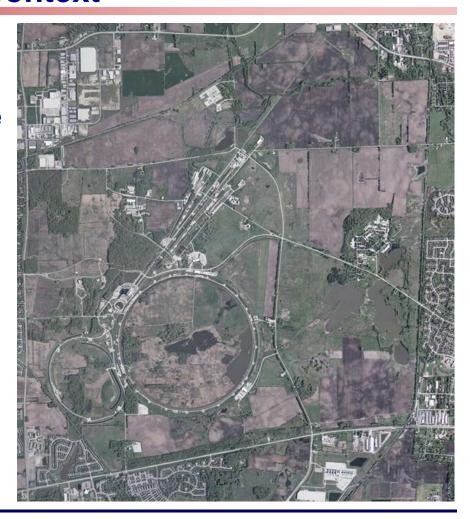
Fermilab Accelerator R&D Strategy

Steve Holmes

DOE Program Review May 16, 2006

Outline


- Strategic Framework
- Program Elements and Goals
 - LHC/Accelerator Research Program
 - International Linear Collider
 - High Intensity Neutrino Source
 - Muon Facilities
 - AARD at the Photoinjector Laboratory
- Education Programs
- Resources

Note: This presentation does not cover the significant accelerator R&D program that has operated in support of Collider Run II.

Strategic Framework: Context

- Fermilab has operated the highest energy particle accelerator in the world since 1983. . .
 - This will change in 2007-09
 - Current plan: Tevatron operations will cease on October 1, 2009
- Fermilab currently operates the most advanced longbaseline neutrino program in the world...
 - J-PARC will become competitive in 2010-2011

Strategic Framework: The Vision

- "A strong and vital Fermilab is an essential element of U.S. leadership in elementary particle physics. Fermilab must play a major role in advancing the priorities identified in this report." EPP2010 Report
- EPP2010, the Office of Science Twenty Year Plan, and the Fermilab Long Range Plan establish similar goals for Fermilab:
 - Energy Frontier: LHC and ILC
 - Neutrinos: MW class accelerator facility
- Vision includes increased commitment to R&D aimed at the long term future, commensurate with our responsibilities as the U.S. center of accelerator based EPP at the end of the decade
- ⇒ Requires an aggressive R&D program accompanied by development of new core competencies at Fermilab.

Strategy

- Priority to R&D aimed at supporting ILC design and development efforts, and establishing Fermilab as both the world leader in scrf technologies and the preferred host laboratory (Bob K.).
- Commitment to expeditious commissioning and development of upgrade options for the LHC.
- Development of options for enhanced capabilities within the U.S. neutrino program.
 - Proton Plan II/SuperNuMI
 - High Intensity Neutrino Source
- Support for activities aimed at the longer term future.
 - Muon R&D
 - Photoinjector Program

StrategyPartnerships and Collaboration

All our efforts are now leveraged via (inter)national partnerships

ILC

- Strong coupling to the GDE (resources and key people)
- U.S. center for scrf development, including industrialization
 - ➤ Significant help from ANL, Cornell, DESY, INFN, JLab, KEK, LANL, MSU, NIU, Penn, SLAC

LHC/LARP

- National collaboration with Fermilab as lead lab: Fermilab, BNL, LBNL, SLAC; close cooperation with CERN
- Close cooperation in our materials program with UW and NWU.

High Intensity Neutrino Source

 National collaboration formed to pursue R&D on the Neutrino Source: Fermilab, ANL, BNL, LBNL, MSU, (SLAC, JLab)

StrategyPartnerships and Collaboration

- Muon Facilities
 - National collaboration sponsored by Fermilab, BNL, and LBNL
 - Signficant university involvement including (locally) IIT, NIU, UC, UIUC, NWU
- AARD at the Photoinjector
 - Participating institutions include DESY, LBNL, NIU, Rochester, UC, UCLA, UIUC
- ANL-Fermilab MOU on Accelerator R&D Cooperation
 - Illinois Accelerator Day: April 21
- Significant interaction with small business via SBIRs
 - Muons (high pressure absorber; cooling concepts)
 - ILC (cavity fabrication techniques; polarized rf gun)

Program Elements and Goals Strengthening Core Competencies

- The main branches within our future rely on superconducting radio frequency acceleration as a technology base.
 - ⇒It is critical that Fermilab establish world-leading expertise.
 - Has triggered a very significant investment in infrastructure and people
- Fermilab has historically been a/the world leader in superconducting magnet technologies and we will maintain this position for the foreseeable future.
- Accelerator simulations are an increasingly important component in the design of large, state-of-the-art accelerator facilities
 - We have been a major participant in the SciDAC program and will continue/expand this effort, which is well aligned with future priorities

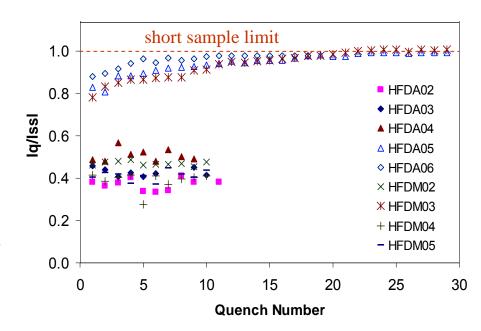
Program Elements and Goals LHC/LARP

Goals:

- Successfully commission the LHC
- Demonstrate, by 2010, a Nb₃Sn based high performance quadrupole suitable for utilization in a LHC luminosity upgrade

Fermilab Role:

- Fermilab "core program" and LARP are now closely aligned
 - > Both programs oriented to quadrupole development
- Major step forward in last year—identification of conductor instability as potential limitation in Nb₃Sn magnets, and successful solution
- Major commitment to hardware and beam commissioning
 - Remote control room (LHC@FNAL)


Program Elements and GoalsLHC/LARP

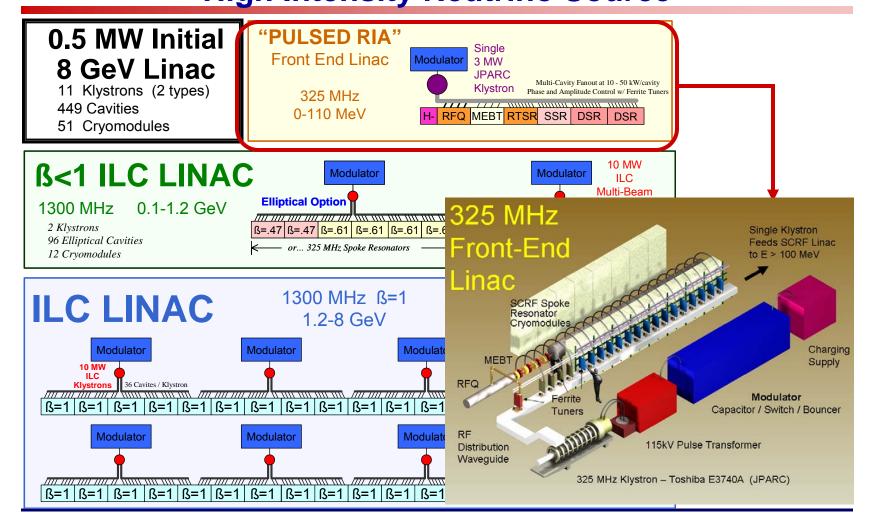
"A major achievement of the HFM group has been their discovery that high performance Nb₃Sn dipole magnet performance can be gravely compromised by flux jump instabilities, which are inherent to all present designs of high-*Jc* Nb₃Sn conductors. This finding, controversial at first,

has now been generally accepted. Its implications must be recognized for all high field Nb₃Sn multipole magnet designs. The group is lauded for clearly defining the stability problem in these magnets."

January, 2006 Director's Review

Program Elements and GoalsHigh Intensity Neutrino Source

Goals:


- Execute a plan for reaching ~1 MW beam power based on utilization of current accelerator assets freed up following completion of Run II
 - Proton Improvement Plan aims for 400 kW before end of Run II
 - ➤ Recycler as a proton accumulation ring: ~700 kW
 - ➤ Antiproton Accumulator as a momentum stacker: >1 MW
- Develop/demonstrate critical technology elements that could enable construction of a very high intensity (>2 MW) neutrino source when married to ILC developed technologies
 - Acceleration of beam with spoke resonators
 - \triangleright rf distribution system capable of powering multiple β <1 structures off a single klystron
- J
- ➤ 8 GeV H⁻ beam transport and MI injection
- ➤ Intensity limitations in the Main Injector
- ➤ Targeting 2 MW beam power

Meson Lab Test Facility:

100 MeV beam in 2009

Program Elements and GoalsHigh Intensity Neutrino Source

Program Elements and Goals Muon Facilities

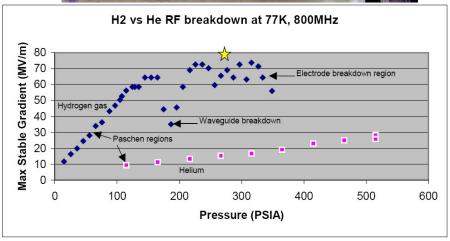
Muon facilities play an important role in our R&D program:

⇒ May be the only long term path to multi-TeV leptons and/or 🕫 in neutrino sector

Goal:

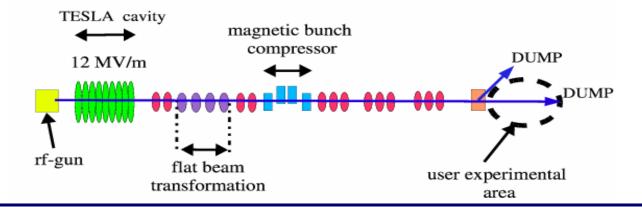
 Develop design concepts and demonstrate the critical underlying technologies that could support construction of a muon storage ring as a long term option for EPP

Fermilab role:


- Fermilab is host to the MuCool activity, centered around the MuCool Test Area (MTA)
 - > Development of technologies for ionization cooling
 - ➤ Aimed at the Muon International Cooling Experiment (MICE) at RAL
- New design concepts
 - > Bunch rotation, FFAG acceleration, storage ring design

Program Elements and Goals Muon Facilities: MuCool Test Area

- Facility to test all components of cooling channel (<u>not</u> a test of ionization cooling), with beam
 - Designed to accommodate full Linac Beam (goal: 2007-8)
 - ≈ 600 W into 35 cm LH2 absorber @ 400 MeV
 - RF power @ 201 and 805 MHz
- Program
 - 201 and 805 MHz cavities in magnetic filed
 - Absorbers
 - Cavities utilizing high pressure
 H₂ (SBIR)



Program Elements and Goals AARD at the Photoinjector

- Wide variety of AARD programs based on 15 MeV e⁻ beam
 - Flat beam
 - Plasma wakefield
 - Beam diagnostics
 - ILC DR kicker
 - Polarized rf gun
- Destined to move to ILCTA in 2007
 - AARD will continue in parallel with ILCTA support

Educational Programs

Accelerator Phd Program

- Initiated 1984; first graduate in 1987
- 30 PhD and 1 Masters graduates
- 26 home universities represented
- 8 current students

Fellowships

- Peoples Fellowship Accelerator Science
- Bardeen Fellowship Accelerator Engineering

USPAS host

- Joint appointments
 - With IIT and NIU (tenure track level)
- Joint programs
 - Joint ME program in rf under development with NIU

Resources

			Dollar amounts in millions, Direct cost only			
					,	, ,
			FY2005	FY2006	FY2007	FY2008
International Linear Collider			\$5.1	\$14.1	\$34.9	\$52.6
RF Infrastruture			\$7.5	\$8.7	\$8.3	\$12.6
Superconducting Magnets (core)			\$2.6	\$2.2	\$2.3	\$2.4
LARP			\$0.7	\$2.5	\$2.5	\$2.5
Energy Frontier			\$16.0	\$27.5	\$48.0	\$70.0
High Intensity Neutrino Source		\$4.4	\$10.3	\$9.8	\$10.1	
Neutrino Facilities		\$4.4	\$10.3	\$9.8	\$10.1	
Photoinjector			\$0.5	\$1.0	\$1.0	\$1.0
SciDAC			\$1.7	\$1.0	\$1.0	\$1.1
Muons			\$1.7	\$1.2	\$1.6	\$1.6
Long Term		\$3.9	\$3.2	\$3.6	\$3.7	
TOTAL			\$24.3	\$41.0	\$61.4	\$83.9

The message:

- We are in the midst of a very significant buildup in Accelerator R&D (even more evident if we went back to FY2004: \$9.8M)
- Build up is aligned with the laboratory's strategic vision

Summary

- Fermilab's future requires that we become a world leader in scrf technologies while maintaining our core competency in superconducting magnets.
 - Energy Frontier and Neutrinos
 - By the end of the decade we expect to be the world leader in scrf and in sc magnets
- The program is appropriately balanced between near, intermediate, and long-term while leveraging multiple scrf activities to cover uncertainties in the ILC schedule.
 - The program relies on an extensive collaborative framework involving outside laboratories and universities.
- We are in the initial stages for a very significant buildup in scrf capabilities and infrastructure in support of this program.
- Details in subsequent presentations